Ron LeMaster

Matej Supej University of Ljubljana

SYSTEMATIC USE OF THE INSIDE SKI IN CARVED TURNS

ICSS 2013

LeMaster & Supej, 2013

"Stand on the Outside Ski!"

Empirical Evidence

LeMaster & Supej, 2013

Ski Attack Angles

Why?

Not simply a correction for tactical errors

- Enables
 - Carving smaller radius turn
 - Carving earlier in the turn
- "Arcing the whole turn"

Howe's Basic Relation

LeMaster & Supej, 2013

LeMaster & Supej, 2013

Limitations

LeMaster & Supej, 2013

To Carve Tightest Turn

 Achieve highest possible edge angle on outside ski

 Put sufficient force on outside ski to make it cut the snow, hold, and bend

Put the rest of the force on the inside ski

Conclusion

 Inside ski is used as vertical support, particularly in the first half of the turn

 Outside ski turns itself due to high edge angle enabled by support of inside ski

 Pressure on the outside ski comes from radial force, not gravity

